Differential response properties of IB(4)-positive and -negative unmyelinated sensory neurons to protons and capsaicin.

نویسندگان

  • Sahera Dirajlal
  • Laura E Pauers
  • Cheryl L Stucky
چکیده

Activation of unmyelinated (C-fiber) nociceptors by noxious chemicals plays a critical role in the initiation and maintenance of injury-induced pain. C-fiber nociceptors can be divided into two groups in which one class depends on nerve growth factor during postnatal development and contains neuropeptides, and the second class depends on glial cell line-derived neurotrophic factor during postnatal development and contains few neuropeptides but binds isolectin B(4) (IB(4)). We determined the sensitivity of these two populations to protons and capsaicin using whole cell recordings of dorsal root ganglion neurons from adult mouse. IB(4)-negative unmyelinated neurons were significantly more responsive to protons than IB(4)-positive neurons in a concentration-dependent manner. Approximately 86% of IB(4)-negative neurons responded to pH 5.0 with an inward current compared with only 33% of IB(4)-positive neurons. The subtypes of proton-evoked currents in IB(4)-negative unmyelinated neurons were also more diverse. Many IB(4)-negative neurons exhibited transient, rapidly inactivating proton currents as well as sustained proton currents. In contrast, IB(4)-positive neurons never displayed transient proton currents and responded to protons only with sustained, slowly inactivating inward currents. The two classes of neurons also responded differently to capsaicin. Twice as many naïve IB(4)-negative unmyelinated neurons responded to 1 microM capsaicin as IB(4)-positive neurons, and the capsaicin-evoked currents in IB(4)-negative neurons were approximately fourfold larger than those in IB(4)-positive neurons. Interestingly, proton exposure altered the capsaicin responsiveness of the two classes of neurons in opposite ways. Brief preexposure to protons increased the number of capsaicin-responsive IB(4)-positive neurons by twofold and increased the capsaicin-evoked currents by threefold. Conversely, proton exposure decreased the number of capsaicin-responsive IB(4)-negative neurons by 50%. These data suggest that IB(4)-negative unmyelinated nociceptors are initially the primary responders to both protons and capsaicin, but IB(4)-positive nociceptors have a unique capacity to be sensitized by protons to capsaicin-receptor agonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-Type Voltage-Gated K Currents Influence Firing Properties of Isolectin B4-Positive but Not -Negative Primary Sensory Neurons

Voltage-gated K + channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between i...

متن کامل

Effect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats

Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...

متن کامل

Characteristics of sodium currents in rat geniculate ganglion neurons.

Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract. We have used whole cell recording to investigate the characteristics of the Na(+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive ...

متن کامل

Localization of SSeCKS in unmyelinated primary sensory neurons

BACKGROUND SSeCKS (Src SupprEssed C Kinase Substrate) is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP) that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%), calcitonin gene related pept...

متن کامل

A-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons.

Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2003